Practical Bioinformatics
Biol 4220
Fall 2020

Instructor
Dr. Michael J. Landis
michael.landis@wustl.edu
(314) 935 - 8082
Rebstock 210 (office)

Course website
All course resources are centralized here:
github.com/WUSTL-Biol4220/home

Class hours
Online (Zoom) MW 8:30am – 12:00pm

Office hours
Online (Zoom) or MW 1:00pm – 2:00pm
Rebstock 210 (by appointment)

Covid-19 logistics for Fall 2020
To protect everyone’s safety, Biol 4220 in Fall 2020 will be taught in an online format that is primarily asynchronous, with some synchronous events. Details are provided towards the end of the syllabus.

Course description
From medicine to genomics to ecology, all fields of biology are now generating large and complex datasets that can only be analyzed using computational approaches. This course introduces computational techniques and perspectives to biologists that are new to computational thinking. Students will learn how to design research workflows, decompose complex problems into simpler solvable units, and apply scientific computing principles to research. In addition, students will practice foundational computing skills, such as how to use Unix-based operating systems on research clusters, write custom analysis programs with shell scripts and with Python, and summarize and visualize analysis output. The laboratory exercises build on one another, culminating in the construction of a bioinformatics pipeline that can process and analyze molecular data. Students will apply their newly learned computational skills and use their pipeline to analyze virus sequence evolution and explore evolutionary models.

Course information
4 units. Intended for upper-division Biology undergraduates and for early-stage Biology graduate students. The course satisfies:
- Advanced Laboratory Requirement for both the Biology Major
- Advanced Laboratory Requirement for the Genomics & Computational Biology Track in Biology
- Advanced Biology Elective requirement for the Bioinformatics Minor

Expected enrollment 10-12 students
Prerequisite courses
Biol 2970
Math 132 (Calculus II)
Math 223 (Calculus III) or 2200 (Elementary Probability)

Other suggested courses
CSE 131 (Computer Science I)
Biol 3100 (R Workshop in Biology)

Primary text
“Computing Skills for Biologists” by Allesina & Wilmes

Suggested texts
“Bioinformatics Data Skills” by Buffalo

Computer resources
All work will be performed through remote Unix-based virtual machines that can be accessed from your personal computer through the network. Please contact the instructor if you do not have a computer and/or internet access in your place of residence.

Learning objectives
Students will learn to
- design, build, and apply bioinformatics pipelines “from scratch” to process and analyze molecular datasets using assorted computational resources
- compare and contrast how biological inferences and hypothesis tests are sensitive to computational settings, such as data cleaning and choice of methods
- identify major features of computer hardware, operating systems, and programming languages
- write, modify, optimize, and debug Python and Unix code to solve biological problems
- work with fellow students using modern collaboration tools and software review methods

Assignments
Reading assignments are selected to prepare students for each session’s lecture and lab. Reading assignments will typically cover 15-30 pages from either the primary text (“Computing Skills for Biologists” by Allesina & Wilmes) or supplementary materials, such as research papers or online tutorials, that will be shared by the instructor through Canvas. Content from reading assignments will be applied during laboratory exercises.

Participation allows students to express their knowledge or curiosity about the course material. Participation includes asking questions during class, in the Canvas forum, and attending office hours.
Labs apply taught concepts to practice and develop problem solving skills. New lab assignments are posted Monday mornings at 8:30am each week. Each lab must be submitted for grading within one week to the GitHub Classroom site. Submitting assignments through our GitHub Classroom site will be covered in class. Instructions for submitting assignments are also found on the GitHub Classroom site for Biol 4220 (link).

Code reviews develop peer relationships and communication skills. Students will be assigned a random partner for code review each week. Instructions for code reviews are given on the GitHub Classroom site for Biol 4220 (link).

Exams will test students’ understanding of definitions, application of formulas, ability to read and write code, and ability to interpret and critique bioinformatics case studies. There will be two exams, where Exam 1 will cover material from the first half of the course, and Exam 2 will focus on material from the second half.

The project will require students to design and execute a small analysis for one or more additional datasets using the analysis pipeline they built. The instructor will provide a list of curated datasets to analyze, which include other infectious diseases but also various clades of plants and animals. Students must get approval from the instructor if they wish to analyze datasets that are not part of the pre-approved list. Students are also encouraged to modify their pipeline to ask novel questions not covered directly in class. Students will deliver a 10-minute presentation on the final day of classes, describing their work to their classmates. Students may choose to emphasize their biological findings, their computational innovations, or their technical challenges. By the end of the course, students will submit the GitHub link for analysis and a two-page summary of their work to the instructor. Details for the project are located in the GitHub Classroom site for Biol 4220 (link).

Grading

Grades are primarily determined through assignments and exams:

<table>
<thead>
<tr>
<th>Score</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>Labs (exercises + code reviews)</td>
</tr>
<tr>
<td></td>
<td>Midterm</td>
</tr>
<tr>
<td>150</td>
<td>Exam 1</td>
</tr>
<tr>
<td>150</td>
<td>Exam 2</td>
</tr>
<tr>
<td>150</td>
<td>Project</td>
</tr>
<tr>
<td>50</td>
<td>Participation</td>
</tr>
<tr>
<td>1000</td>
<td>Total</td>
</tr>
</tbody>
</table>
Letter grades typically follow the standard numerical scale: A for 90% to 100%; B for 80% to 89%; C for 70% to 79%; D for 60% to 69%; F for 59% or less. The instructor will manually adjust letter grades based on performance and effort displayed by either individual students or by the class as a whole. Additional considerations will be made due to the Covid-19 pandemic.

General Policy and Procedures

All students will adhere to the tenets of the Undergraduate Student Academic Integrity Policy (link), which forbids cheating, plagiarism, and other forms of academic dishonesty.

Students will follow the University’s Discrimination and Harassment Policy (link). Any student who feels they have experienced harassment or discrimination, or if they witness their peers being subjected to such behavior, that student has options to report the behavior anonymously, without fear of repercussions, as described in the University’s Discrimination and Harassment Policy.

Special Accommodations

The instructor will do everything possible to satisfy any Special Accommodations for students. Students are responsible for requesting Special Accommodations at least two weeks before those accommodations are needed through Disability Resources (link).

Covid-19 logistics for Fall 2020 (continued)

Biol 4220 has been adapted to an online format for Fall 2020. The goal is to ensure that everyone remains as healthy as possible while retaining a classroom experience that is engaging and enriching for all. At any time, please provide feedback and/or suggestions for ways we could better achieve this goal for you and/or the entire class.

Lectures and lab exercises will be taught online, with lecture slides and lab materials posted online at the start of each class meeting. The first 30-60 minutes of each class will begin with a lecture over Zoom that provides an overview of the day’s learning objectives and the general design of that day’s lab exercises. Throughout the remainder of each class, I’ll be available to answer questions, expand on topics, and help with assignments.

Students may work on the lab assignments whenever they prefer. Some lab assignments will be team exercises, meaning students will need to work collaboratively, coordinate efforts, and submit work as groups. Just as with individual exercises, team exercises can take place during the time reserved for the course, our outside of that time. Quizzes will be assigned at each class, and must be submitted before the start of the next class.

Office hours will be held over Zoom with in-person office hours available weekly with an appointment. Students and faculty who meet for in-person office hours must follow WUSTL safety protocols (https://covid19.wustl.edu/health-safety/), including self-screening (https://screening.wustl.edu/Screen).