Organic Chemistry

Instructor: Dr. Rhiannon Iha
E-mail: rkiha@wustl.edu
Office: McMillen Lab 421

Lecture: M-F 9am to 10:45am, Louderman 458
Preliminary Exam Times: Tuesday, 7-8pm, Lab Sciences 300

Office Hours: M-F, 11am to 12pm, Louderman 458
Help Sessions: M, 7pm-8pm, Louderman 458

Instructional Staff:
Lecture Instructor: Dr. Rhiannon Iha, rkiha@wustl.edu
Laboratory Instructors: Dr. Rhiannon Iha, rkiha@wustl.edu, Dr. Rob Behm, rbehm@wustl.edu

Graduate Teaching Assistants:
Meghan Stouffer: Office Hours, TBA

Course Materials:
- **Text:** Organic Chemistry, 8th ed., L.G. Wade, Jr., Prentice Hall; 2012

Supplementary materials:
- Washington University Orbit Molecular Model set, Indigo Instruments
- Calculator: Any non-programmable, non-graphing calculators

Laboratory Materials:
- Chemistry 261-262 laboratory Manual, Washington University
- Chemistry Spiral Bound Carbonless lab Notebook, 50-100 pgs, Hayden McNeil
- Safety Goggles, OSHA-ANSI Z87.1 Approved

Course Description:
The first semester of organic chemistry will introduce you to the structural and physical characteristics of organic compounds. Additionally, reactions of these compounds will be studied, and the study of reactions will be continued and expanded upon during the second semester of organic chemistry. Organic chemistry covers a significant amount of material pertinent to natural and biological process, and can help create an appreciation for the relationship between sciences. While this course builds upon information learned in general chemistry, it also greatly differs from general chemistry. Upon learning the basic foundations of organic chemical reactions and properties, this knowledge can be applied to complex problems. Consequently, memorization of material is not enough for solving these complex problems, and instead problem solving and applying learned knowledge to new situations is a key part of being successful in organic chemistry.

Attendance:
Attendance will not be formally recorded or required, but do realize that attendance of the lecture is part of the regular studying that will help you to perform well in the course. Organic chemistry is a subject where new topics constantly build upon previously learned materials and skills, so attending lecture and understanding the material presented is of great importance to being successful in the course. Finally, it is important to remember that Summer courses have an intense and fast pace. Please try to attend every lecture as missing one class is equivalent to missing almost a full week of class during the regular semester.

Chemistry 261—Syllabus, Summer 2013
Lectures:
The quantity of information to learn for chemistry 261 is significant, and in combination with the fast pace of a Summer course, is too much to cover in the lecture. As such, the lectures will focus on key ideas, illustrative examples, and material that the instructors feel should be emphasized or explained in greater depth. As students, you are responsible for the information in the text (specifically the blue summary sections) unless otherwise indicated. Remember, the lecture is designed to summarize the most significant aspects of the course material, and material presented on exams will often be closely related. Consequently, it is to your advantage to attend the daily lectures.

Blackboard:
Please become familiar with and plan to regularly access Blackboard. Suggested book problems, practice problem sets, quiz keys, exam keys, and grades will be posted there, and much course-related communication will occur through Blackboard. Additionally, the discussion board will be an important feature for communicating with the instructor and other students. Questions and clarifications about course material and related problems from the book or problem sets can be submitted in the discussion board; other students may feel free to answer the questions, and Dr. Iha will check the board daily to provide answers and clarifications.

Reading Problems and Assignments:
Before each chapter, related reading and recommended problems will be assigned. These problems will be posted on blackboard along with supplemental practice problems. Problem sets will not be collected or graded, and students should check their answers in the Solution manual or posted answer key for the problems. To get the most out of doing these problems, they should be attempted without using the answer key. It is often important to struggle and reason through problems to gain a better understanding of organic chemistry. Finally, if you have difficulty doing these problems, please ask for help by attending office hours.

Office Hours:
Office hours will be provided daily by Dr. Iha from 11am to 2 pm. If you are having difficulty understanding lecture material, need a clarification on something discussed in lecture, or wish to discuss problem sets, office hours are the perfect time for these activities.

Additional office hours will be provided by the lecture TAs.

Academic Integrity Policy:
Students are expected to adhere to Washington University’s academic integrity policy. Any violation of this policy including but not limited to cheating on examinations, quizzes, laboratory reports, or re-grade requests will be referred to Washington University’s Committee on Academic Integrity. If it is found that the student has violated the academic integrity policy, the penalty will be automatic failure of the course and any other conditions decided upon by the Academic Integrity Committee.

Re-grade Policy
Exams can be submitted for re-grade with the online re-grade request form available in the “Course Documents” section of blackboard. All re-grade requests must be submitted within one class sessions of receiving the graded quiz or exam, and the complete original quiz or exam must be turned in without any additional marks etc. to be considered for a re-grade. Additionally, upon turning in a request, it should be noted that the entire quiz or exam will be re-graded, though the focus will be with respect to the requested re-grade material.
Grading:
3 x 50 point Preliminary Examinations (Tuesday Nights, 7pm-8pm) = 150 points
 - Preliminary Exam 1 (6/18)
 - Preliminary Exam 2 (6/25)
 - Preliminary Exam 3 (7/2)
 - Preliminary Exam 4 (7/9)

The lowest preliminary exam score will be dropped

1 Take Home Midterm Exam = 200 points
 - Handed out at the end of class (6/19)
 - Due at the beginning of class (6/24)

1 Cumulative, In Class Final = 250 points
 - Final Exam (7/12)

Laboratory Reports = 100 points

Total = 700 points

All in class and evening exams are closed book and closed note.

The take home exam is open note and open book. Collaborations are allowed, but students must note which classmates they collaborate with on each question.

A failing average exam grade or a failing grade on laboratory reports will result in failure of the course.

There will be no make-up exams given, but one preliminary exam grade will be dropped.

Grading Breakdown
A 90% and above
B 80% and above
C 70% and above
D 60% and above

This class is not graded on a curve or with respect to an average grade. Grade cutoffs represent the percentage of material that should be mastered to obtain a given letter grade. These percent cutoffs, however, are flexible and may be changed based upon exam performance. However, grade cutoffs will not be made higher than these percentages (i.e. the grading will not be changed so that 95% and above becomes the A cutoff)
Course Outline and Reading (tentative)

Chapter 1-Introduction and Review (1-1 to 1-11)
June 10th, 11th

Chapter 2-Structure and Properties of Organic Molecules
June 11th, 12th

Chapter 3-Structure and Stereochemistry of Alkenes
June 12th, 13th, 14th

Chapter 4-Stereochemistry
June 17th

Chapter 5-The Study of Chemical Reactions
June 18th, 19th

Chapter 1-Introduction and Review (1-12 to 1-14)
June 20th

Chapter 6-Alkyl Halides: Nucleophilic Substitution and Elimination
June 21st, 24th, 25th

Chapter 7-Structure and Synthesis of Alkenes
June 25th, 26th,

Chapter 8-Reactions of Alkenes
June 27th, 28th

Chapter 9-Alkynes
July 1st

Chapter 10-Structure and Synthesis of Alcohols
July 2nd, 3rd

Chapter 11-Reactions of Alcohols
July 3rd, 5th

Chapter 14-Epoxides, Ethers, and Sulfides
July 8th, 9th

Chapter 15-Conjugated Systems, Orbital Symmetry, and UV
July 10th, 11th