Goals of course:

- To examine the biophysical concepts of neural function with the emphasis on neural signal processing at synapses and elementary circuits.
- To study modern biophysical/engineering approaches to investigate neural function.
- To learn critical analysis and presentation of primary research literature

Coursemaster:

Vitaly Klyachko
Whitaker 390D
Office hours: Mon: 11:30am-1:30pm
Phone: 935-8538(BME), 262-5517 (Med School)
Email: klyachko@wustl.edu

Credit: 3 units

Prerequisites:

Introductory Neuroscience, Mathematical analysis, or permission of instructor

Suggested Text:

"Foundations of Cellular Neurophysiology" by Johnston and Wu, The MIT Press.

Lectures and Discussions:

The course will combine lectures and weekly discussions of primary research literature.

Lectures will be held in Whitaker Hall, Rm 216 on Mondays from 10:00am-11:30am.

The primary literature presentations and discussions will be held in Whitaker Hall, Rm 216 on Wednesdays from 10:00am-11:30am.

In class presentations:

Each student will make two PowerPoint presentations of primary research papers during the semester.
Each presentation will count towards 1/4 of the class grade.

Sign up for 2 half-class presentation dates:
http://www.doodle.com/zsh2ch2fn8b6x69f

Presentation evaluation:

Evaluation will be based on the following criteria: understanding and presentation of techniques used, understanding and presentation of background information, ability to present and synthesize ideas described in the papers, clarity of presentation.

Exams:

There will be two take-home tests. The first will be held during the semester. The second will be given during the final exam period for this course.
Grading:
Exam #1 – 1/4 of the grade.
Exam #2 – 1/4 of the grade.
Presentation – 1/4 of the grade.

The final grade will not be curved-graded.

Cellular Neurophysiology

Schedule

Whitaker Hall (BME, Rm 216)

Wednesday, January 19
10:00 Lecture 1: Neuronal communication: synaptic/dendritic structure and function
Reading: “Foundations of Cellular Neurophysiology” by Johnston and Wu, Chapters 1, 2

Monday, January 24
10:00 Lecture 2: Functional diversity of voltage-gated ionic conductances, stochastic channel mechanisms
Reading: “Foundations of Cellular Neurophysiology” Ch. 7, 9

Wednesday, January 26
10:00 Discussion 1-2: Voltage-gated ion channels in synaptic function
http://jp.physoc.org/content/333/1/619.long
http://www.jstor.org/stable/2886703

Monday, January 31
10:00 Lecture 3: Linear and non-linear properties of excitable membranes
Reading: “Foundations of Cellular Neurophysiology”, Ch. 2, 6

Wednesday, February 2
10:00 Discussion 3: Action potential: initiation and propagation
http://www.nature.com/nature/journal/v440/n7087/full/nature04610.html

http://www.jneurosci.org/cgi/reprint/28/29/7260

Monday, February 7
10:00 Lecture 4: **Functional properties of dendrites**
Klyachko

Reading: “Foundations of Cellular Neurophysiology”, Chapter 4

Wednesday, February 9
10:00 Discussion 4: **Dendritic signaling mechanisms**
Klyachko

http://www.jneurosci.org/cgi/reprint/26/7/2088

http://www.nature.com/nature/journal/v375/n6533/pdf/375682a0.pdf

Monday, February 14
10:00 Lecture 5: **Synaptic transmission I, quantal analysis**
Guest lecture: Wilkinson

Reading: “Foundations of Cellular Neurophysiology”, Ch. 11

Wednesday, February 16
10:00 Discussion 5: **Foundations of quantal analysis**
Klyachko/Wilkinson

http://jp.physoc.org/content/124/3/560.long
see also: http://jp.physoc.org/content/117/1/109.long

http://jn.physiology.org/cgi/reprint/73/3/1145

Monday, February 21
10:00 Lecture 6: **Synaptic transmission II: Calcium and neurotransmitter release; molecular mechanisms of release**
Guest lecture: Wilkinson

Reading: Foundations of Cellular Neurophysiology”, Ch. 12
Wednesday, February 23
10:00 Discussion 6: The role of calcium in neurotransmitter release

Papers:
See also: http://jp.physoc.org/content/189/3/535.long

http://jp.physoc.org/content/193/2/419.long

Monday, February 28
10:00 Lecture 7: Excitatory vs. inhibitory synaptic transmission, Feed-forward/feedback inhibition

Reading:
Foundations of Cellular Neurophysiology”, Ch. 13

Wednesday, March 2
10:00 Discussion 7: Mechanisms of inhibitory synaptic transmission

Papers:
http://jp.physoc.org/content/130/2/326.full.pdf

http://www.sciencemag.org/cgi/content/full/311/5758/233
See also: http://www.nature.com/neuro/journal/v12/n1/pdf/nn.2230.pdf

Take-home Exam 1

March 7 – March 11: Spring Break

Monday, March 14
10:00 Lecture 8: Synaptic vesicle cycling

Reading:
“Foundations of Cellular Neurophysiology”, Ch. 12

Wednesday, March 16
10:00 Discussion 8: Debate on vesicle recycling mechanisms

Papers:
http://jcb.rupress.org/cgi/reprint/57/2/315
See also: http://jcb.rupress.org/cgi/reprint/57/2/499

Monday, March 21
10:00 Lecture 9

Short-Term synaptic plasticity: presynaptic mechanisms

Klyachko

Reading:

"Foundations of Cellular Neurophysiology", Ch 11, 12

Wednesday, March 23
10:00 Discussion 9:

Short-term synaptic plasticity and information processing

Klyachko

Papers:

http://jn.physiology.org/cgi/reprint/97/4/2863

http://www.nature.com/nature/journal/v421/n6918/pdf/nature01248.pdf

Monday, March 28
10:00 Lecture 10:

Postsynaptic mechanisms, spatial and temporal summation, dendritic attenuation

Guest Lecture: Huettner

Reading:

Foundations of Cellular Neurophysiology”, Ch 13

Wednesday, March 30
10:00 Discussion 10:

Postsynaptic mechanisms

Klyachko/Huettner

Papers:

http://www.nature.com/nature/journal/v346/n6284/pdf/346565a0.pdf

See also: http://www.nature.com/neuro/journal/v2/n6/pdf/nn0699_508.pdf

Monday, April 4
10:00 Lecture 11:

Long-term Plasticity, learning and memory

Guest Lecture: Huettner

Reading:

Foundations of Cellular Neurophysiology”, Ch 14, 15

Wednesday, April 6
10:00 Discussion 11:

Papers:

Long-term plasticity, learning and memory

Klyachko/Huettner

Isaac, Nicoll, Malenka (1995) Evidence for silent synapses:
implications for the expression of LTP. *Neuron* 15:427-434.

Monday, April 11

10:00 Lecture 12:

Electrophysiological methods to study synaptic mechanisms.
Klyachko

Reading:

Foundations of Cellular Neurophysiology”, Ch 8, 14

Wednesday, April 13

10:00 Discussion 12:

Modern Electrophysiological techniques
Klyachko

Papers:

- Neher and Sakmann (1976) Single-channel currents recorded from membrane of denervated frog muscle fibres.

- Neher and Marty (1982) Discrete changes of cell membrane capacitance observed under conditions of enhanced secretion in bovine adrenal chromaffin cells.
 Proc Natl Acad Sci U S A. 79:6712-6.

Monday, April 18

10:00 Lecture 13:

Optical techniques to study synaptic mechanisms
Guest Lecture: Holy

Reading:

Foundations of Cellular Neurophysiology”, Ch B

Wednesday, April 20

10:00 Discussion 13:

High-resolution imaging techniques for in vivo and in vitro studies of neuronal function
Klyachko/Holy

 http://www.sciencemag.org/cgi/reprint/248/4951/73

 http://www.nature.com/nature/journal/v440/n7086/pdf/nature04592.pdf

Monday, April 25

10:00 Lecture 14:

Role of synapses in higher order processing:
Guest Lecture: Burkhalter

synaptic integration in cortical networks

Reading:

The Synaptic Organization of the Brain by G. Shepherd,
Oxford Univ. Press, Ch. 12
Wednesday, April 27

10:00 Discussion 14: Synaptic function in cortical networks

Papers:

Take-home Exam 2